Recognition of Surface Reflectance Properties from a Single Image under Unknown Real-World Illumination

نویسندگان

  • Ron O. Dror
  • Edward H. Adelson
  • Alan S. Willsky
چکیده

This paper describes a machine vision system that classifies reflectance properties of surfaces such as metal, plastic, or paper, under unknown real-world illumination. We demonstrate performance of our algorithm for surfaces of arbitrary geometry. Reflectance estimation under arbitrary omnidirectional illumination proves highly underconstrained. Our reflectance estimation algorithm succeeds by learning relationships between surface reflectance and certain statistics computed from an observed image, which depend on statistical regularities in the spatial structure of real-world illumination. Although the algorithm assumes known geometry, its statistical nature makes it robust to inaccurate geometry estimates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Reflectance Estimation and Natural Illumination Statistics

Humans recognize optical reflectance properties of surfaces such as metal, plastic, or paper from a single image without knowledge of illumination. We develop a machine vision system to perform similar recognition tasks automatically. Reflectance estimation under unknown, arbitrary illumination proves highly underconstrained due to the variety of potential illumination distributions and surface...

متن کامل

Surface reflectance recognition and real-world illumination statistics

Humans distinguish materials such as metal, plastic, and paper effortlessly at a glance. Traditional computer vision systems cannot solve this problem at all. Recognizing surface reflectance properties from a single photograph is difficult because the observed image depends heavily on the amount of light incident from every direction. A mirrored sphere, for example, produces a different image i...

متن کامل

How do Humans Determine Reflectance Properties under Unknown Illumination?

Under normal viewing conditions, humans find it easy to distinguish between objects made out of different materials such as plastic, metal, or paper. Untextured materials such as these have different surface reflectance properties, including lightness and gloss. With single isolated images and unknown illumination conditions, the task of estimating surface reflectance is highly underconstrained...

متن کامل

Surface Reflectance Classifying under Natural Illumination

Though a point light source is more suitable to measure the BRDF of the surface, the natural illuminations in the real-world are not point light source and very complex. Fortunately, the complex natural illuminations exhibit some statistical regularity [3]. These statistical properties of the natural illuminations lead to predictable image statistics for a surface with given reflectance propert...

متن کامل

Estimating surface reflectance properties from images under unknown illumination

Physical surfaces such as metal, plastic, and paper possess different optical qualities that lead to different characteristics in images. We have found that humans can effectively estimate certain surface reflectance properties from a single image without knowledge of illumination. We develop a machine vision system to perform similar reflectance estimation tasks automatically. The problem of e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001